• Amazon Web Services
  • Data Analytics

Data Warehousing on AWS

Contact us to book this course
Learning Track icon
Learning Track

Data Analytics

Delivery methods icon
Delivery methods

On-Site, Virtual

Duration icon
Duration

3 days

Data Warehousing on AWS introduces you to concepts, strategies, and best practices for designing a cloud-based data warehousing solution using Amazon Redshift. This course demonstrates how to ingest, store, and transform data in the data warehouse. Topics covered include: the purpose of Amazon Redshift, how Amazon Redshift addresses business and technical challenges, features and capabilities of Amazon Redshift, designing a Data Warehousing Solution on AWS by applying best practices based on the Well-Architected Framework, integration with AWS and non-AWS products and services, performance tuning, orchestration, and securing and monitoring Amazon Redshift.

Course objectives

In this course, you will learn to:

  • Describe Amazon Redshift architecture and its roles in a modern data architecture
  • Design and implement a data warehouse in the cloud using Amazon Redshift
  • Identify and load data into an Amazon Redshift data warehouse from a variety of sources
  • Analyze data using SQL QEV2 notebooks
  • Design and implement a disaster recovery strategy for an Amazon Redshift data warehouse
  • Perform maintenance and performance tuning on an Amazon Redshift data warehouse
  • Secure and manage access to an Amazon Redshift data warehouse
  • Share data between multiple Redshift clusters in an organization
  • Orchestrate workflows in the data warehouse using AWS Step Functions state machines
  • Create an ML model and configure predictors using Amazon Redshift ML

Activities

This course includes presentations, hands-on labs, and demonstrations.

Intended audience

This course is intended for:

  • Data engineers
  • Data architects
  • Database architects
  • Database administrators
  • Database developers

Prerequisites

We recommend that attendees of this course have completed the following courses:

  • Fundamentals of Analytics on AWS – Part 1 (Digital course)
  • Fundamentals of Analytics on AWS – Part 2 (Digital course)
  • Building Data Lakes on AWS (Instructor led Training)
  • Building Data Analytics Solutions Using Amazon Redshift (Instructor led Training)

Course outline

  • Modern data architecture
  • Introduction to the course story
  • Data warehousing with Amazon Redshift
  • Amazon Redshift Serverless architecture
  • Hands-On Lab: Launch and Configure an Amazon Redshift Serverless Data Warehouse
  • Data models for Amazon Redshift
  • Data management in Amazon Redshift
  • Managing permissions in Amazon Redshift
  • Hands-On Lab: Setting up a Data Warehouse using Amazon Redshift Serverless
  • Overview of data sources
  • Loading data from Amazon Simple Storage Service (Amazon S3)
  • Extract, transform, and load (ETL) and extract, load, and transform (ELT)
  • Loading streaming data
  • Loading data from relational databases
  • Hands-On Lab: Populating the data warehouse
  • Features of Amazon Redshift Query Editor v2
  • Demonstration: Using Amazon Redshift Query Editor v2
  • Advanced queries
  • Hands-On Lab: Data Wrangling on AWS
  • Disaster recovery
  • Backing up and restoring Amazon Redshift provisioned
  • Backing up and restoring Amazon Redshift Serverless
  • Factors that impact query performance
  • Table maintenance and materialized views
  • Query analysis
  • Workload management
  • Tuning guidance
  • Amazon Redshift monitoring
  • Hands-On Lab: Performance Tuning the Data Warehouse
  • Introduction to Amazon Redshift security and compliance
  • Authentication with Amazon Redshift
  • Access control with Amazon Redshift
  • Data encryption with Amazon Redshift
  • Overview of data orchestration
  • Orchestration with AWS Step Functions
  • Orchestration with Amazon Managed Workflows for Apache Airflow (MWAA)
  • Hands-On Lab: Orchestrating the Data Warehouse Pipeline
  • Machine Learning Overview
  • Getting started with Amazon Redshift ML
  • Amazon Redshift ML workflow scenarios
  • Amazon Redshift ML Usage
  • Hands-On Lab: Predicting customer churn with Amazon Redshift ML
  • Overview of data sharing in Amazon Redshift
  • Amazon DataZone for Data as a service
  • Hands-On Lab: End of course challenge lab

Ready to accelerate your team's innovation?